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INTRODUCTION

This final report is for work carried out under Grant No. AFOSR 90-0232

during the three-year period from April 1, 1990 to March 31, 1993.

The principal objective of the research was to further develop Bird's direct

simulation Monte Carlo method (DSMC), for modelling rarefied hypersonic flow,

so that larger simulations and a wider variety of conditions could be handled than
those that had been considered practical in past work. The approach taken was

to structure the particle code developed so that it would make effective use of the

latest computer technology available, to review all algorithms employed to insure that

they were constructed to operate in an efficient way, and to give special attention to

studying the relevant physical processes present, in different rarefied flows, so that the

modelling employed in the code would be an effective representation for the physical

problem being treated in each case.

The computational facilities needed to carry out the work were made available as

a result of our close collaboration with members of the Aerothermodynamics Branch

at NASA-Ames Research Center, in particular G. S. Deiwert and W. J. Feiereisen.

In the 3-year period of the grant this gave our students access to the use of super-

computers such as the Cray-2, Cray Y-MP, Intel iPSC/860 Gamma, Intel iPSC/860

Delta, and the CM-2. More recent updates consisting of the Intel Paragon XP/S-15
and the Cray Y-MP C90 are also being made available. In early stages of their work,

the students would either make use of an HP 9000/730 workstation in out laboratory

or access the supercomputers from microcomputers in our laboratory. In later stages

of their work, they would conduct their research on workstations at NASA-Ames.

The work carried out in this period was closely tied to earlier contributions of

several individuals who participated in developing the version of the code used in these

studies. Immediately preceding the start of this investigation, Jeffrey D. McDonald

had finished a multiple species version of a particle code which he developed to take

advantage of the vector capabilities of the Cray family of supercomputers (Cray- -4

2, Cray Y-MP), as well as to take advantage of certain algorithmic improvements

introduced by our group. The most recent version of this code is called PSim2

and is reported in his Ph.D. thesis [1] which dealt with its development. Leonardo

Dagum was concurrently working on a similar code which he wrote for the Connection
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Machine (CM-2), to take advantage of certain features of that machine [2]. Brian

L. Haas was simultaneously devoting his efforts to the development of chemistry

models, suitable for use in a simulation employing particles, and he finished his thesis

[3] on this subject on December 1990. In this same period, Michael S. Woronowicz

was studying rarefied supersonic flows past flat plates and wedges using the original

single-species version of the code called PSiml, and his efforts were very useful in

validating the original coding. His thesis work [4] was finished on June 1991.

After finishing his thesis McDonald turned his attention to the use of the mul-

tiprocessor Intel iPSC/860 Touchstone Gamma prototype computer and focused his

efforts on developing the new version of his code for it. These efforts led to the

creation of PSim3, which was later found to contain programming concepts that

were not entirely satisfactory in some regards. The knowledge gained from this effort

together with large programming segments that could be transferred directly were

incorporated by McDonald into a much more successiul version called PSim4. Haas

and McDonald then joined efforts in incorporating chemistry models into this code to

create a version that possessed the capabilities we were ultimately seeking. This is the

version that has proven to be very useful and exciting and fulfills the expectations and

potential one would expect from a supercomputer based on a parallel architecture.

A certain amount of support capability in the form of additional software must

be available in order to use complex programs such as PSim2 and PSim4 on super-

computers. In our case, one must start with a definition for a three-dimensional body

placed in a cubic cartesian grid, which consists of a list of positions and orientations

for all the facets making up the body surface. To this one adds the appropriate spec-

ification of boundary conditions on the body surface as well as on all the surfaces of

the enclosing wind tunnel walls. This geometry generation program (Geom) runs

on most any computer and creates an output file which is used to initialize the main

particle code, PSim2 or PSim4.

The code PSim2 can be compiled to run on any computer although it was

specifically designed to take advantage of the vector capability of the Cray-2 and

Cray Y-MP and therefore it runs most quickly on those machines. The code PSim4

is presently configured to run on both the multiprocessor Intel iPSC/860 Touchstone
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Gamma prototype and the Intel iPSC/860 Touchstone Delta computer, although it

was designed to be ultimately compatible with a wide variety of parallel architectures.

The output file from either PSim2 or PSirn4 is post-processed by a control

program called CPlot. This program allows one to dynamically define new variables

in terms of those present in the output file and thus access a wide variety of results.

ID this way the basic set which is computed becomes a minimal set and one may

then expand the set after a simulation is completed. For graphical display, a program

gCPlot is used which runs on a Silicon Graphics workstation. This program com-

municates interactively with the CPlot program which runs on the computer where

the simulation data is stored. When one wants to view the body geometry alone a

program bc2CPlot is used to convert the output file from Geom to a binary file

format compatible with both CPlot and gCPlot.

Each of these support programs was developed by Michael A. Fallavollita, fol-

lowing initial work carried out by McDonald and through further consultation with

him. Fallavollita then took on the principal responsibility for further development of

the parallel code, conducting an investigation to analyze the performance of the code

in the parallel environment represented by the Intel iPSC/860 Touchstone Gamma

prototype at NASA-Ames and the iPSC/860 Touchstone Delta at Caltech, and for

carrying out the various applications we were interested in investigating. His research

led to certain necessary changes in moving the code from the Gamma to the Delta

and his thesis work [5], soon to be published, will report on these findings.

For those interested in additional information on the programs described above,

at NASA-Ames one may contact

William J. Feiereisen

Phone: (415) 604-4225

E-Mail: feiereis@corvus.arc.nasa.gov

and at Stanford University one may contact

Donald Baganoff

Phone: (415) 723-2849

E-Mail: baganoff@hpsim.stanford.edu
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otherwise the following publications can be consulted to gain detailed information.

PUBLICATIONS

A major portion of our reporting has been in the form of publications in archive
journals, papers given at conferences, and documents such as a student thesis. A
better grasp of the work reported can be obtained if the listing of publications is

roughly grouped in terms of subject areas.

Michael S. Woronowicz focused his attention on a study of the flat plate bound-
ary layer and flow past a wedge, specifically for high Mach number rarefied flows. A

primary motivation for the work stemmed from the fact that our simulation capa-
bility allowed for the use of over 10 million particles and this number was, at the
time, two orders of magnitude greater than that used by any other group. Of course,

the interest in a large number of particles is related to the fact that it allows one to
investigate greater flow detail or study smaller Knudsen numbers. Another motiva-
tion for the work was to provide our research group with the experience of thoroughly

studying a simple boundary layer so that we could better treat and handle the bound-
ary layers appearing on more complex blunt bodies. The principal publication from

Woronowicz' work was his Ph.D. thesis which was also published as a department

report.

1. Woronowicz, M.S., "Application of a Vectorized Particle Simulation to

the Study of Plates and Wedges in High-speed Rarefied Flow," Ph.D.

thesis, Stanford University, Stanford, CA, June 1991. This study also appears as

a report of the Department of Aeronautics and Astronautics, SUDAAR Report.

No. 608, June 1991.

The next two publications resulted from the fact that Woronowicz was able to

show that the Knudsen number based on the plate length and the conditions at the
plate surface provided a superior correlation for experimental and simulated data than
the two well-known, and frequently used, parameters called the viscous interaction

parameter and the so-called slip parameter. This discovery resulted from his efforts

to obtain the best agreement possible between experimental and simulated results.
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2. Woronowicz, M. S. and Baganoff, D., "Skin Friction and Heat Transfer

Correlations for High-Speed Low-Density Flow Past a Flat Plate,"

AIAA Paper No. 91-1314, AIAA 26th Thermophysics Conference, June 24-26,

Honolulu, Hawaii, 1991.

3. Woronowicz, M.S. and Baganoff, D., "Drag and Heat Transfer Correla-

tions for Rarefied Flow Past a Flat Plate," Jour. Thermophysics and

Heat Transfer, Vol. 7, No. 1, p. 63, January-March 1993.

The following paper was presented at the 18th Rarefied Gas dynamics Symposium,

held in Vancouver Canada, July 1992 and will appear in the symposium proceedings

for that meeting.

4. Woronowicz, M.S. and Baganoff, D., "Application of a vectorized Particle

Simulation to the Study of a Cold Isothermal Flat Plate in High-

Speed Rarefied Flow," to be published in the proceedings of the 18th Rarefied

Gas Dynamics Symposium, July 1992.

One of Fallavollita's early studies led to an analysis of the computational cost

incurred in conducting a particle simulation and he was able to show that an optimum

condition exists for carrying out a run. His study showed that, for a given level

of statistical uncertainty in the results, the computational cost is minimized if a

certain minimum number of particles per cell is used; beyond this minimum, the

computational cost is a constant, independent of the number density of particles

chosen for the cells. His very preliminary results were reported in a paper given at

an APS meeting in 1991.

5. Fallavollita, M.A., Baganoff, D. and McDonald, J.D., "Computation Cost

and Error in Particle Simulation Methods," Bulletin of the American

Physical Society, Vol. 36, No. 10, p. 2633, Nov. 1991.

His further work on this topic led to a paper that has been accepted for publication

in the Journal of Computational Physics. Because this work has yet to appear, it is

also presented as an appendix to this report.
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6. Fallavollita, M.A., Baganoff, D. and McDonald, J.D., "Reduction of Cost

and Error for Particle Simulations of Rarefied Flows," Journal of Com-

putational Physics, to be published.

Fallavollita's principal research efforts were directed towards the application of
the Intel iPSC/860 Gamma prototype and the iPSC/860 Delta to the work of our

group. His study involved an analysis of code and hardware performance to determine

the level achieved and to determine what could be done to improve it still further.

One of his early reports was made at a meeting at NASA Ames.

7. Fallavollita, M.A. "Parallel Implementation and Performance of a Par-

ticle Simulation for Modelling Rarefied Hypersonic Flow," Computa-

tional Aerosciences Conference, NASA-Ames Research Center, August 20, 1992.

A further development of this work led to a presentation at the Symposium on High-

Performance Computing for Flight Vehicles, in Arlington, VA on December 20, 1992.

This paper appears in the proceeding of the symposium and in the Journal on com-

puting Systems in Engineering.

8. Fallavollita, M.A., McDonald, J.D. and Baganoff, D., "Parallel Implemen-

tation of a Particle Simulation for Modeling Rarefied Gas Dynamic

Flow," Journal on Computing Systems in Engineering, Vol. 3, Nos 1-4, p. 283,

1992.

Fallavollita has also been interested in using his code to carry out representative

runs using a generic blunt body consisting of a cone and a spherical nose. These runs

were conducted for various Mach numbers and angles of attack. All of his results will

be presented in his Ph.D. thesis [5] which should appear in late summer 1993.

9. Fallavollita, M.A. 'Implementation and Performance of a Particle Sim-

ulation Method Suited to MIMD Parallel Computer Architectures,"

Ph.D. thesis, Stanford University, Stanford, CA, August 1993.

As part of his thesis work, Brian L. Haas focused his attention on the modelling

of chemical rate processes for a particle method and his research led to the following

two publications which appeared in the time frame of the present grant.
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10. Haas, B. L. and McDonald, J. D., "Verification of a Vectorized Particle

Method in Simulating Reactive Flows," AIAA Paper No. 91-1367, AIAA

26th Thermophysics Conference, June 24-26, Honolulu, Hawaii, 1991.

11. Haas, B. L., "Models of Energy Exchange Mechanics Applicable to a

Particle Simulation of Reactive Flow," Jour. Thermophysics and Heat

Transfer, Vol. 6, No. 2, p. 200, April-June 1992.

A particle method is ideally suited to handle rarefied flows. However, for certain
rarefied flow conditions, the cold gas and resulting higher density in a boundary layer

may cause the local conditions near the cold surface to approach the near-continuum

state. Therefore, the first place where a simulation, based on a particle method,

encounters difficulty is in a cold boundary layer. One of our objectives was to develop

a suitable way to handle the flow in a boundary layer without introducing a major
disruption in our present coding. Several distinct steps need to be taken in order to

accomplish this task. One first needs to find a suitable measure to judge whether the

conditions in a cell, in computation space, correspond to rarefied or near-continuum

conditions. Once one has a suitable measure, it can then be used to decide whether

the code should branch to a special algorithm to handle the near-continuum state.

In order to establish a measure, one needs a theoretical solution for the kinetic
relaxation of a gas in a state of gross rest, and this is needed for the general case

of a non-Maxwellian gas. In order to obtain a theoretical solution, one must first

carry out the mathematics to handle the underlying theory. This has recently been

accomplished by Baganoff, and a paper on this subject has been published in the

Physics of Fluids A.

12. Baganoff, D., "Maxwell's Second and Third Order Equations of Trans-

fer for non-Maxwellian Gases," Phys. of Fluids A, Vol. 4, No. 1, p. 141,

January 1902.

This paper derives the exact moment equations of the Boltzmann equation for molecu-
lar models physically more realistic than the Maxwell molecule. These exact equations

are highly reduced algebraically because 3 of 5 integrals are shown to be exactly zero;

and the 3 that are zero are integrals that are far too complex to integrate. However,

as long as one knows they are exactly zero, which is proven in the paper, then their
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complexity does not matter. The two remaining integrals are generalizations of the
ones that Maxwell himself derived, for the special case of Maxwell molecules, around

100 years ago.

The reason it is so important to know that 3 of 5 integrals are exactly zero, for

the more general case, is that these equations are the ones that are used in developing

approximate solutions using the moment method, for example, in developing the

Burnett terms. If one knows that a certain group is supposed to be exactly zero

then it improves any series expansion immensely, because they are automatically

eliminated in any analysis when using the highly reduced set, as opposed to using the

original set, and they do not survive to complicate later algebra.

A follow-on paper by Baganoff represents an application of the above theory

and presents a solution for the case of a gas in a state of gross rest. This is needed

to build a theory for handling the near-continuum.

13. Baganoff, D., "Kinetic Relaxation of a Monatomic Gas in a State of

Gross Rest," Phys. of Fluids A, Vol. 5, No. 5, p. 1260, May 1993.

This is the first time that anyone has constructed an exact theory to handle the case

of the hard sphere. The case of the hard sphere is important because it is the one for
which a particle simulation is the most securely based, and therefore, its comparison

is the most meaningful; and this check has never been made before. This solution is
important to us because it describes what happens in a single cell in a single time

step in the simulation. It defines for us the proper measure of time so that in the
future we can distinguish conditions representing full relaxation from those of partial

relaxation, namely, when to switch over from one algorithm to another in our code.

PROGRESS SINCE LAST PUBLICATION

A major portion of Fallavollita's most recent effort has been devoted to the

task of making the necessary changes and adjustments to our parallel particle code so

that it runs in an efficient way on the Intel iPSC/860 Touchstone Delta at Caltech.

This machine is a parallel supercomputer with 528 processors and over 8 gigabytes of

memory. The hardware environment represented by the Delta is different in several

ways from that for the iPSC/860 Touchstone Gamma prototype at NASA-Ames,

8
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with which we started our work on a parallel code. The principal differences are: a

change in the topology of the communication paths between processors, a factor of

four greater number of processors, a factor of 8 larger memory, and the absence of a

host processor.

The most important element encountered, in making the transition to the larger

computer, was the larger number of processors available caused an unanticipated

problem that had to be a.l ',essed. This can be explained as follows. Our parallel

code is based on the uivision of simulated space into three-dimensional blocks of

uniform size, and then each processor on startup is assigned an average of, say, six

blocks. As the computation progresses, the amount of time required to process each

block noted and then used to judge the appropriate transfer of blocks (actually, the

data associated with each block) from heavily loaded processors to more lightly loaded

processors,. In this way an attempt is made to more nearly balance the processing

time for each processor. However, irrespective of the rules used in selecting which

blocks, and how many blocks, are to be transferred, and to which processors they

are to be transferred, one must decide on a communication strategy in making the

transfer of data. This is where we encountered an unexpected problem.

When the number of processors used is small, in our case less than 128, it makes

little difference in the total communication time whether the blocks to be transferred

are sent one at a time, in a clearly inefficient way, or whether effort is made to use the

communication channels more efficiently by sending multiple blocks simultaneously

along separate routes and to separate destinations. When the total communication

time is small, one concludes that the appropriate choice is to send the blocks one at a

time because the resulting code is far simpler to create, simpler to write, much easier

to understand, and as a result far more robust in its use. This is the approach we
took and it worked well on the 128-processor iPSC/860 Gamma at NASA-Ames.

However, when attempts were made to employ 256 and then 512 processors

on the iPSC/860 De!'., at Caltech, an unexpectedly rapid saturation developed and

communication started consuming up to 30% of the total computation time. In

addition, because of this large cost, proper balance was not being achieved and very

large runs were not being carried out successfully. This clearly meant that it was
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necessary to reconsider the communication strategy and code used in transferring

blocks during load-balancing steps. a

The run-time data collected while the details of the problem were being explored

are shown in Fig. 1. Shown plotted is the scaleup versus the number of processors

used on both the Gamma and the Delta machines. The terminology scaleup, as used

here, is the measure of performance obtained by basing results for any number of

processors on that for the case of 16 processors, while the problem itself remains

unchanged. (This leads to a definition of scaleup where the total computation time

per particle for 16 processors is divided by the corresponding time for any other run.)

The dashed line gives the ideal speedup which is simply proportional to the number

of processors used.

40 i-w,-i rr r no,-r sonr 9m11 logo

30 --
•~/ /

20. /o

20

10 _ _ _ _

01-- Total Time
-A. A Total-Balance

-t --- Perfect

0
0 100 200 300 400 500 600

Number of Processors

Fig. 1. Scaleup versus the number of processors used on the

Gamma and Delta machines. Triangle symbol: total run time

including load balancing. Circle symbol: run time for simulation

alone, without load balancing.
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The triangle symbol represents the measured total computation time which includes

load balancing, and the circle symbol represents the measured time for the simulation

alone, without load balancing. The difference in time is the time required for load

balancing; and it can be seen that roughly 30% of the total run time for 512 processors

was consumed by load balancing.

The redesign of the communication strategy carried out by Fallavollita was to

attempt to load the communication system to its maximum by determining which

blocks could be sent simultaneously, and to do this until all blocks requiring transfer

were handled. This is achieved by making sure that no two blocks having the same

destination are sent at the same time. This, of course, requires the presence of a great

deal of software intelligence; and also leads to a potentially less robust code, requiring

careful debugging. His success in accomplishing the task is shown in Fig. 2, where

120 . ... 141 r gulf--li•,,
-4 Seria

I A ParalelI
100

60

E
F- 40

0 25 50 75 100 125 150

Number of Processors

Fig. 2. Run-time for load balancing versus the number of pro-

cessors used. Circle symbol: serial transmission of blocks. Trian-

gle symbol: simultaneous transmission of bocks having separate

destinations.
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the run-time for load balancing is displayed versus the number of processors used.

The circle symbol represents the original data for serial transmission of blocks and

the triangle symbol gives the time found in using his new scheme, where simultaneous

transmission is employed for blocks having separate destinations. It is clear from the

figure that the new approach reduces the time to a fully acceptable level.

Once the load among the different processors is appropriately balanced and the

simulation has reached steady state, the simulation is run for an extended period of

time so that time-averaging of appropriate statistical quantities can be carried out, to

obtain the desired macroscopic fluid quantities. This period of time can represent the

major portion of the total run time for the simulation. At this point one is interested

in the performance of the particle code in terms of time per particle per time step

and how this measure changes with the number of processors used, see Fig. 3 below.

12 10 -5

"0

No Averagin |10-7

10 102 103

Number of Processors

Fig. 3. Performance of the code and hardware after the simula-
tion has reached steady state. Circle symbol: time includes the
computation of diff aver ages. Triangle symbol: time does

not include the computation of different averages.
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This particular measure is meaningful for a particle method because the algorithmic

operations used in the method scale in this way. Figure 3 give this information for

runs covering both the Gamma and the Delta machines. The difference between the

two curves shown represents the amount of time needed to compute and store the

data for the averaged values.

The two horizontal lines give the performance of a previously-developed highly-
vectorized version of the same code on a single processor on the Cray-2 and the Cray

Y-MP. As can be seen, the 528-processor iPSC/860 Touchstone Delta improves the

performance by roughly an order of magnitude. The slight curvature seen in the ar-

rangement of data points indicates that the performance is not precisely proportional

to the number of processors brought into play, but its deviation over the range shown

in comfortably small.

The data of Fig. 3 were collected using an average of 6 blocks-per-processor.

This particular number was selected strictly on the basis of ai, intuitive guess. No

information was available to make a better selection. After this part of the study was

completed, Fallavollita increased the number of blocks-to-processors by the factor

23 to see what effect it would have on a run with 512 processors. To everyone's

surprise, the performance improved significantly, and the new value found was 0.11
microseconds/particle/time-step. Clearly, we have much to learn in finding the best

operating conditions in using the Intel parallel supercomputer, and Fallavollita will

be exploring this question as part of his thesis.

Once the operation with 512 processors was performing well, a large run was
carried out to further explore the code's behavior. Much of our testing has been

carried out with a generic blunt body consisting of a 60 degree half-angle cone, blunted
with a spherical nose, as shown in Fig. 4. The figure presents a contour plot of

the temperature field about the body for an angle of attack of 10 degrees, a Mach

number of 24, a Knudsen number based on the body diameter of 0.04, and nitrogen

gas at a free stream temperature of 210 K. As a first run, the gas composition was

limited to nitrogen molecules and atoms and vibrational excitation, dissociation and

recombination, but no ionization or radiation. The size of the simulated windtunnel

in cell units was 208 tall by 96 deep by 80 long, for a total of 1.6 million cells, and

the diameter of the cone was 69 cells. The number of particles used in the simulation

13



was 67.5 million giving an average of 12.3 particles per cell. The number of cells per

block was 43 and therefore the corresponding windtunnel dimensions in blocks was

.52 by 24 by 20 for an average of 48 blocks per processor. The computation time for

both the transient development of the flow and the time averaging period totaled 50

minutes. This is by far the best performance that we have been able to obtain.

200

/I

150-

100

50-

II

0 50 100

Fig. 4. Temperature distribution in t•h central plane of the

blunt body test discussed in the text.

A more quantitative study of the flow can be pursued by considering specific

cuts through the flow field as shown in Fig. 5. The axial cut is chosen to pass as close

to the stagnation point as can be determined from an inspection of the data. In view

14
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of the angle of attack of the body, the vertical cut was positioned to show both faces

of the cone, and one would expect to see a degree of asymmetry in the data for this

cut.

VERTICAL CUT1

= I AXIAL CUT

II

!I

Fig. 5. Positioning of two cuts for displaying results in the

following two figures.

Figure 6 shows the temperature and number density for an axial cut located

at the position y = 103 cells. The nose of the body can be seen in the data at the
position of 33 cells. It is quite evident that the temperature field extends much further

ahead of the body than does the number density field. In fact the number density

field shows that a large fraction of the 67.5 million particles used in the simulation
are found lying close to the body surface, and in this case the number density at the

body surface is 33 times the free stream density. The run was carried out for a body

temperature of 1,500 K, or approximately 7.5 times free stream temperature, and had

it been set to free stream temperature, the number density at the body surface would

have been even larger.
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Fig. 6. Temperature and number density distributions along
an axial cut passing nearly through the stagnation point.

The transverse cut discussed above is shown in Fig. 7. The bottom or 'com-
pression' side of the body is shown on the left side of the figure and the top or
'expansion' side of the body is shown on the right. The temperature profile does not

show relative peaks in the same order as the density profile because of the position
of the cut and the angle of attack of the body. This can be seen more clearly by an
inspection of Figs. 4 and 5. Here again, it is quite evident that the number density

field seems to hug the body while the temperature field extends some distance about

the body. This behavior is characteristic of a high Mach number, rarefied flow about

a blunt body and where the body temperature is reasonably low. The effect is not
so pronounced if the body is slender or if the Mach number is lower. For this case

it is clear that the flow is in a near-continuum state near the body surface and that

the particles are not being used efficiently in modelling the flow. The particles are

needed in the outer flow, where the Navier-Stokes equations clearly do not apply, but

the particles are collecting near the body surface where it may be feasible, in fact,

to use the Navier-Stokes equations. This situation has prompted our study of the

16
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1

near continuum, as discussed above, in the hope that the particle method could be
interfaced with a near-continuum method so that all particles used in a simulation

would remain confined to the region of the flow where they are truly needed.

TRANSVERSE CUT AT X = ST CELLS

40

-, Numbw Dwsity, n/n.

35- -- , Tempewaum (T/Tm)/3

10.

, (,

t Ic t b i
14 a

zI a

H 15t

c s t I I

10

50 100 150 200

Y-PosrTIoN (CELL~s), wINDTUNNLrt mBUGHT

Fig. 7. Temperature and number density distributions along a

transverse cut through the body as shown in Fig. 5.

As part of our investigation of the near-continuum and how it should be in-

terfaced with a particle method, we have turned to a study of Couette flow to gain

some of the needed insight. For the case of Maxwell molecules, a suitable theoreti-
cal solution for Couette flow has been known for 30 years, which is the well-known

solution given by Liu and Lees. However, a Maxwell molecule is quite inadequate

for modelling a real molecule; a more realistic model is an inverse power molecule,
a variable hard sphere molecule, or even a hard sphere molecule. The same analyt-
ical work reported by Baganoff and listed as item 12 in the publications discussed
above has made possible the generalization of the work by Liu and Lees to these more

general molecular models. Terry Denery has carried out the detailed development of
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the new theory and his results for the hard sphere molecule are shown in Fig. 8 for

the normalized shear stress. The Mach number across the layer was set at 2/3 and

the ratio of temperatures (hot/cold) to 3/2. Besides showing that the new theory

and simulations agree perfectly in the region where the particle method is expected
to hold, the figure also clearly shows where the particle method begins to fail in the

near-continuum, namely, in the Navier-Stokes limit, and that the point of failure de-
pends on cell size. As expected, smaller cells allow the particle method to be used

further into the near-continuum. The purpose of the theory is to allow one to define

the conditions more precisely.

HARD SPHERES
M - 2M3. T/twrw - 3/2

* . ....... I . . ... I .. *.... ' . .... * '" . .......

1FREMOLECaAE LUWT

0

/ ----a 5 cells
10V 10 CONS
/ - 25-- CeONS

10-2 i , 'Cal a .. .. l a I a.......I " 2....... a . ......
10-3 10-2 10"1 1 10 102

Knudsen Number, A/d

Fig. 8. Normalized shear stress versus Knudsen number for

Couette flow assuming a hard-sphere molecular model.

A similar plot for the normalized heat flux is given in Fig. 9 for the same flow

conditions. The data from the two figures were used by Denery to develop a suitable
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criterion that would allow one to predict where the particle method would fail in a
boundary layer. At the present time, it appears that the proper criterion is based on
the cell Knudsen number, i.e., the local mean free path length divided by the linear
dimension of the cell. If the cell Knudsen number is greater than 0.5 then the particle
method is valid, but if the cell Knudsen number is less than 0.5 then the Navier-
Stokes equations, or any equivalent continuum set, must be used. This is both a very
important result for our work and it would be a fairly easy criterion to implement in
a particle code.

HARD SPHERES
M W 2/3, Td/Tw - 3/2

1 FREECLECUI.5 uWT

LL

.2 10*1 F

0

/ ~Theory/ -6-- e1 Tl'o
// --'-- 10 cslls

e 25 cells
1 0 -2 a ( , ,,,.I , * , ,,,,,I a i l l .

10-3  10-2 10"1 1 10 102

Knudsen Number, VJd

Fig. 9. Normalized heat flux versus Knudsen number for Cou-
ette flow assuming a hard-sphere molecular model.

The data in Figs. 8 and 9 were obtained for the single case of M = 2/3 and
Th&t/Tc,,d = 3/2. Clearly, a large number of additional cases, especially for large
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temperature ratios, should be checked before a final criterion is selected. Once this
is done and a suitable near-continuum method is chosen, along with an appropriate

method for interfacing it with the particle method, then the theory that led to Figs. 8
and 9 can again be used as a means of checking the resultant hybrid method. That
is, to see if the hybrid method gives the correct prediction throughout the entire

flow. Even though the ,ressure is constant across the layer in Couette flow, it is
easy to change the local Knudsen number by changing the local temperature and
consequently the local density. Therefore, if the temperature ratio across the layer is
set to 10 or higher and the flow is rarefied near the hot side, then it may be in the
near-continuum near the cold side where the density is greater by a factor of 10 or

more.
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Introduction

When using a large collection of simulated particles to model a molecular flow on

a computer, one is interested in knowing how many particles are needed in each small

volume of space in order to properly model the relevant flow physics; and does the

use of this number have a beneficial effect on computational cost? These important

questions arise irrespective of the particular method used in the simulation, whether

it is the method of molecular dynamics (Alder and Wainwright [1]), an approach used

in simulating ionized gas motion (Hockney and Eastwood [2]), or the direct simulation

Monte Carlo (DSMC) method employed in the study of rarefied gas flows (Bird [3]).

In addition, it is clear that the number required to obtain a given level of simulation

accurac-i when dealing with a nonsteady flow is far larger than that needed for a

stead, flow where time averaging may be permitted. Our discussion will focus on

steady flows and the use of time averaging. In addition, Bird's DSMC method was

selected for the study because the calculational effort grows roughly in proportion

to the total number of particles N, for which the analysis to be presented is more

straightforward, as opposed to N2 or NlogN.

Beyond the requirement of steady flow, the use of time averaging to reduce the

effect of statistical fluctuations, which are inherent in a particle method, is based on

two assumptions: first, that a sufficient number of particles is in fact present in a

computational cell to adequately model the physics of interest; and second, that a

time average can be used to replace the cell average obtained if a still larger number

of particles were used, or if a large number of repeated runs for the same conditions

were carried ou,. If this replacement is permitted, then the concept of an ensemble

average applies to this situation and its exchange with the time average leads to the

assumption that the ergodic hypothesis holds. Use of the time average requires that

random processes associated with a single cell in space at one time are statistically

independent of those associated with the same cell at a different time. In other
words, the time interval between samples is greater than the correlation time for the

random quantity being averaged. If all these assumptions are valid, then one is able

to employ a cell sample size given by S, = NJ, where N, is the average number of

particles in a single cell and T is the number of time steps used in the time averaging.

Because the relative statistical error for an averaged quantity, defined by the ratio

rms/mean, decreases as S7 1/ 2 for a statistically independent random process, one
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concludes that doubling T allows one to halve Nc, provided that N, is initially large
enough. Therefore, as long as the computational effort is simply proportional to Sc, oi
which is true for Bird's DSMC method, then the simulation with the smaller Nc would

be preferred because a smaller demand is placed on the amount of computer memory
required, while the computational cost and modelling precision remain the same. Our
objective is to fully explore these issues with regard to the DSMC method.

The act of doubling T and halving Nc is certainly limited because one would
quickly arrive at a point where too few particles would be present in a cell to ade-
quately model a physical gas flow; an obvious example is N, = 1. Long before this
point is reached, it is clear that the simulation would loose efficiency and longer and

longer time averages would be required to attempt to obtain the same level of relative
statistical error, thus driving up the computational cost. Because no theory exists to
guide one in determining how many particles are needed to adequately model given

fluid mechanical processes, to evaluate the corresponding computational cost, or to
determine whether cost can be reduced by following a particular mode of operation,
we conducted a series of numerical experiments using a modified version of the DSMC

method to explore these questions. The basic approach followed was to repeatedly

run the same simulation for a given problem while varying the duration of the time

average and the total number of particles used in the simulation, and then collect the
appropriate data to evaluate the level of statistical uncertainty present in the results.

Simulations

The representative problem chosen for study consisted of a two-dimensional
rarefied flow past a flat plate placed normal to the oncoming stream as depicted in
Figs. 1-3. The free stream Mach number was set at 8 and the Knudsen number, based
on the plate height, was fixed at 0.1 to clearly place the flow in the transition regime.
A unique characteristic of a rarefied gas flow is that the temperature field extends
much further ahead of a blunt body than the density or pressure fields, which can be

clearly seen by comparing Figs. 1-3. In order to limit the number of variables in this
first study, the simulated gas chosen consisted of diatomic Nitrogen with rotational
nonequilibrium (collision number set to 5) but no vibrational nonequilibrium. The
molecular collision cross section was modeled using Bird's variable hard-sphere model
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destinations.

11

[4], where the value of the exponent in the inverse power force law was set to 10.

The boundary condition on the flat plate was chosen as isothermal, with the plate

temperature set equal to 7.5 times the free stream temperature, a value typical for

high speed flight in the upper atmosphere. For particles contacting the plate diffuse

reflection was assumed. Our intention was to study a fairly straightforward rarefied

flow so that the major effects of interest could be easily identified.

In order to properly explore the questions raised, one must have access to a

method of simulation that has a very large dynamic range, otherwise the search for

modelling limits would be thwarted by the limitations of the simulation itself. In

addition to a large dynamic range, the simulation must be computationally efficient

because very large simulations as well as small simulations must be fully explored.

All our simulations were carried out on the Cray-YMP and made use of a highly

vectorized code written by McDonald [51 which employs a specialized vectorization-

compatible selection rule for modelling collisions (see Baganoff and McDonald [6])

and various programming steps taken to improve code efficiency, as discussed by

McDonald [5] and Baganoff [7]. The resultant computational speed of the code was

roughly 1.0 microsecond per particle per time step.

In defining the problem to be studied, performance considerations led to the

selection of simulated wind tunnel dimensions of 40 cells in the streamwise direction,

55 cells in the vertical direction (half space) and 3 cells in depth for a total of 6,600

cubical cells. The vertically oriented flat plate had a half height of 10 cells and a

streamwise thickness of 3; see Figs. 1-3. The upstream mean free path length was set

at 2.0 cells, giving the Knudsen number of 0.1 quoted above. On varying the aver-

age particle number density (based on the entire simulation) from roughly 8 to 121

particles per cell, the overall size of the simulations thus varied from roughly 53,000

to 800,000 particles. The fairly large upper limit was the controlling factor in our

selection of a two-dimensional problem for study, as opposed to a three-dimensional

problem. Our use of a small 3-unit depth for the simulated wind tunnel, while mod-

elling a two-dimensional problem, was related to the three-dimensional capability of

the code used. This particular selection of parameters resulted in a run time of ap-

proximately one second per time step for the larger simulations, and a corresponding

total run time of roughly 0.5 hrs. The reference solution, see Eq. (1) below, employed

800,000 particles and 1,689 time steps for-time averaging the data.
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Statistical Error

In order to determine the level of statistical fluctuations, or rms error, associ-

ated with a given simulation, one must consider two items: first, a reference solution

is needed against which all others are compared; and second, a specific definition for

the measure of rms error must be introduced. For the rarefied flow considered, an

exact solution is simply not available to provide a reference. However, it will be shown

that a procedure can be found for determining the absolute rms error for each run,

from an analysis of the entire group of runs, even without having the exact solution

itself among the group. This apparent logical contradiction becomes more rational

when one learns that at least one high quality solution must be present in the group

to give reliable results; and that the results of the full analysis are not much different

from the straightforward approach of using the highest quality run, consisting of the

largest number of particles and the longest time averaging, as the reference.

With regard to defining the rms level of statistical fluctuations, it is clear that

the macroscopic fluid quantities density, velocity, temperature, pressure, stress, and

heat flux may exhibit different levels because they represent different moments of

the velocity distribution function. Because density is the zeroth-order moment, it

should exhibit the smallest ratio of rms error to mean, while pressure and tempera-

ture represent second-order moments and the corresponding ratios should be higher.

Therefore, the analysis must distinguish between the different macroscopic variables.

Most of the results given below will be presented for the temperature variable. In

defining a single numerical measure of error for a particular macroscopic variable, one

could consider a single point in the flow that corresponds to a particular position of

interest or consider an average for the entire flow field. The definition to be applied

will make use of an average over the flow field.

The appropriate concepts are most easily reviewed if the simplest approach is

considered first, i.e., the case consisting of the largest number of particles and the

longest time averaging is used as the reference, and all other runs are compared

with it. In a simulation, a macroscopic fluid quantity is first determined from an

appropriate average of data associated with the particles in a single cell and then it

is further averaged as the simulation is advanced in time. Using the overbar notation

to designate a time average, the symbol 4,,j will be used to represent a time-averaged
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macroscopic fluid quantity q associated with run a and evaluated for cell i. If the

corresponding reference quantity 4,.,, is viewed as an exact mean value, then the square
error can be defined by

b , _ (1)

A single dimensionless measure of relative error for the entire flow can then be intro-
duced by writing

_ 1 Nce. , 1)_ 1 (2)

where A. has the interpretation of a dimensionless rms value. An alternative to (2)

that simplifies the computation somewhat makes use of a single reference mean value,

such as the maximum, and the corresponding relation reads

2 Nei 1 2S= 1 ( (3)
Ncelis j=1 /

On comparing the value of a fluid variable at the stagnation point, or a point of

maximum, to its free stream value, the ratios for density, temperature, and pressure
are roughly 15, 15, 100, respectively, for the case studied; see Figs. 1-3. Because

random fluctuations scale with the size of the local mean value, it is clear that the

relative error pM is heavily weighted by the large values near the plate while A, is more
evenly weighted. Figures 4 and 5 give the results from a series of tests for A, and p,
respectively, for the fluid temperature variable. The independent variable in the two
figures is the average number of particles per cell defined by N, = Ntotal/Ncein. and
the parameter that was varied was the size of the sample for the entire run defined by

S = Nto0t.T, where T is the number of time steps used in the time averaging. In this
analysis all time steps were used in the averaging, none was skipped. Generally, factors

of two were used in varying the quantities Nt0 tal and T. Comparison of Figs. 4 and 5
shows that the respective curves look very similar except for their absolute numerical
values, which are different because of the different normalization used in (2) and (3).

The datum point that is missing in the two figures is the one for which the reference
would be compared to itself. All the curves show the same trend, namely, that the

relative rms error decreased monotonically with increasing N, for fixed values of
the total sample size S. Likewise, it also decreases monotonically with increasing T

for fixed values of N,. Because the computational effort grows in proportion to S,
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the data show that for fixed computational cost and for most of the region studied,

increasing N, is clearly more effective than increasing T in producing a small rms

error. Likewise, expression (3) is preferred over (2) because it is more convenient to

evaluate and yet it predicts essentially the same results.

Alternatively, a theoretical determination of the absolute rms error, as opposed
to the relative rms error, can be found by first considering two distinct runs (a, 0),
each carried out with a different number of particles and/or a different duration of

time averaging. If 4c,,i and 4,6,i represent time averaged data for the same cell but for

two different runs, then one is able to define a measure of their difference by

a2 = - (4)

Now, both 4,, and 4,, can be considered to be composed of the exact mean value plus

an error; and therefore, their difference is merely the difference of the two absolute
error terms alone. Consequently, we may write

b262, = _ -'',2 (5)

If an average is again taken over all cells in the flow, then (5) leads to the relation

S 1 Neel

S=N i.,( - + of (6)Kq18r,mar l

where the constant •z is arbitrarily introduced to nondimensionalize the equation.
In view of the definition of the absolute error term E,,i, it is reasonable to treat it as

a random variable with respect to its subscript i; and surely its mean value is zero. In

addition, the two quantities Ec,i and 2B,i ought to be statistically independent since
they derive from two independent runs. On this basis the cross product term in (6)

is expected to vanish when the sum is carried out over all cells (Nce,1 = 6,600 for

the example studied), thus reducing the relation to

A2,, = 0+0,0 (7)

where a2 is a dimensionless spatially-averaged absolute error term defined by

Neell,
S 1Ncels 2 (8)

qr'raz l
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Equation (7) provides the means for obtaining the absolute rms error for each

run, even without having the exact solution itself in hand. This follows from the fact

that the left-hand side of (7) can be computed directly for the different combination

of runs using the spatial average of definition (4), i.e.,

A' Nc, 1 - , (9)
r,maz i=1

The quantities on the right-hand side of (7) are obtained from the solution of the

resultant set of simultaneous equations. Clearly the system is over specified, because

there are r(r-1)/2 distinct entries in the symmetric matrix A2 , and only r unknowns

., where r is the number of different cases or runs. A discussion of (7) is most easily

followed if the runs are first conceptually ordered with respect to their rms error,

where the smallest is designated as run r. Using this ordering, it is clear that the

entries near the diagonal in the symmetric matrix A2, are not as useful (small

relative error) as those further removed. Therefore, the system of equations can be
conveniently reduced, by ignoring the less useful equations, to a properly specified

set, without having to resort to a least square error method to solve the entire set.

On retaining the subset of (7) for which a = 1,2,... (r - 1) and 13 = r and then

arbitrarily including the equation a = 1 and #3 = (r - 1), a closed set of equations is

obtained and it is given by

A1,7  1 0 0 1 al

A 2  22 ,r 0 1 0 1 a2

(10)

Az lr 0 0 . 1 1 c,..1
A2,,_. 1 0 1 0 a

As expected, the solution of (10) varies slightly with changes in the selection
of equations retained and the value of ca. shows the greatest sensitivity to alterations

in the selection. Nevertheless, Fig. 6 displays the resulting solution of (10) for our
data, again for the temperature variable, and shows that agreement with Figs. 4

and 5 is quite good, demonstrating a firm consistency between the three approaches.

The agreement between Figs. 4-6 therefore allows one to conclude that the approach
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defined by Eq. (3) is much preferred because of its ease in evaluation while still

providing the desired information.

The logical procedure leading to (10) gives spatially-averaged absolute rms

error values for the flow. Equivalent quantities for individual cells could be found if

one were willing to consider a greatly increased computational effort. In Eq. (6) the

cross product term vanished because of the spatial averaging. The same term could

be made to vanish, while retaining the index i, if an ensemble average were introduced

instead. This would allow the same development leading to Eq. (10) except the index

i would be preserved, thus giving values associated with individual cells. Clearly the

large number of repeated simulations required to carry out ensemble averaging would

be prohibitively expensive in practise. However, the concept that such data could be

found in principle is important to our understanding of the method.

Computational Cost

The display of data in each of the Figs. 4-6 reflects the order in which the

numerical simulations were conducted. For example, consider Fig. 5 and the sequence

for which Nc = 121 particies/cell. In this case the total number of particles used in

the simulation was set, once steady state was reached, and the time averaging was

carried out in steps, where the total time-averaging period for each step was double

the previous period. If the conditions of a run happen to be compatible with the

requirements of the ergodic hypothesis then the rms error should decrease as T-/;

and it can be seen from the data for N, = 121 that a factor of 4 increase in T

leads to a reduction of rms error by a factor of 2, which is consistent with the

ergodic hypothesis. However, this rule clearly does not apply for all values of Nc

displayed, but it is difficult to judge from the curves where the rule begins to fail.

The same observation also applies if the data of Fig. 5 were displayed with T being

the independent variable.

On the other hand, if the choice of variables is rearranged as shown in Fig. 7,

then the judgement becomes much easier to make. The total sample size S = Ntot0 IT,
which also represents the computational cost for the DSMC method, is shown as a

function of the average cell particle density No, for fixed values of the dimensionless

rms error p.. Because the simulations could not be conducted in this order, these
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results were obtained from suitable cross plots of the two graphical forms p" versus

N, and p. versus T. Focusing attention on the curve for a fixed 4% rms error,

it is evident that two asymptotes exist. For Nc greater than approximately 100

particles/cell, the ergodic hypothesis clearly applies, i.e., the computational cost is

constant and independent of the size of the simulation. This is because in this limit

the rms error is proportional to S-1/2 and therefore a fixed error implies a fixed S;

and a fixed S results in a fixed computational cost because it is linearly related to S.

Finally, from the definition S = Ntot.IT, a fixed S allows a free choice of Niot8i (or

T) and thus cost is independent of the size of the simulation Ntotai.

Following the same curve for 4% error, we find that for N, less than approx-

imately 30 particles/cell, the computational cost rises rapidly with just a small de-

crease in N,. This is the region in which the simulation becomes very inefficient,

because there are too few particles in a cell to adequately model the flow physics.

Consequently, one attempts to make up the severe deficiency with a huge increase in

the period of time averaging. This asymptotic limit obviously shows that, for a given

level of rms error, there is a minimum Nc that is allowed, even if the period of time

averaging were infinite. In retrospect, this is a conclusion that should be expected on

physical grounds; however, the numerical simulations were needed to fix the actual

numerical value at which this occurs. The division between efficient and inefficient

simulations can be conveniently defined by the knee in the curve, which for the case

of 4% error appears at roughly N, = 30 particles/cell.

Continuing to review the curve for 4% error in Fig. 7, we see that a 5-fold

increase in Ný from 25 to 125 particles/cell leads to a 10-fold decrease in the compu-

tational cost. In other words, a large simulation is less costly than a small simulation!

At first glance, this appears to be counter-intuitive, but in actual fact it is merely

a reflection of the difference in simulation efficiency at the two extremes. This is a

very important conclusion for this class of simulations, because it shows that access

to greater computer memory can have a dramatic effect on reducing the computer

run time. It also points out that for an extremely large simulation that makes use of

all available computer memory and still does not operate in an efficient mode, and

which would normally require several hours of run time, sufficient savings in time

could be realize by switching to an efficient mode of operation to suggest the possible

use of disk read/write to allow the necessary further increase in Ntota,. For this same
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4% rms error level, we see that roughly 100 particles/cell are required for an effi-

cient simulation and that for the two-dimensional example studied (N, = 6,600) this
translates into a total of 660,000 total particles required. A similar three-dimensional

problem would require over an order of magnitude greater number (exact ratio ob-
tained from the 55 cell height to 3 cell depth used). Because more than 10 words of

data storage are needed for each simulated particle, especially if chemical reactions

are modelled, it can be seen that roughly 120 Mwords of memory are needed for an
efficient simulation, even when the geometrical resolution of the problem studied is

fairly modest, as in our example problem.

Discussion and Conclusions

Many of the past applications of the DSMC method for two- and three-dimensional

problems were conducted at average number densities of around 15 to 20 particles

per cell. This was done for a number of closely coupled reasons relating to the size
of available computer memory, code execution speed, total run time that could be

committed, and the type of machine used. The clear conclusion drawn from Fig. 7 is

that every effort should be made to employ an average particle number density 4 or 5
times greater, so that full advantage can be taken of the greater simulation efficiency.

This is a result that is independent of machine architecture and depends solely on
the physics of rarefied gas flow and its simulation. However, the ease with which

the desired operating point can be reached is machine dependent and does require

appropriate consideration.

The obvious questions left unanswered by this study relate to differences intro-
duced by more complex flow geometries, the presence of multiple species and chemical

reactions in the simulated gas, rms error specific to a particular cell as opposed to

a single measure for an entire simulation, and the effect of varying cell size. The

asymptotic limit suggested by each curve in Fig. 7 can be interpreted as the number

of particles needed in a single cell to give the same accuracy in a single time step.

However, the study was conducted for the case of a steady flow and it does not follow
that this same number would necessarily be valid for time accurate results. This ques-

tion would require a separate study dealing with transient flows. Likewise, in regions

of flow where gradients are steep, as occur in regions close to solid boundaries where
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translational nonequilibrium becomes very important, one is also not able to concl,:de
from this work that 100 particles per cell is sufficient to give the same 4% resolution,
because the boundary layer was relatively thick in the example studied owing to the

fairly high Knudsen number chosen. What has been shown is that computational cost 4

for the DSMC method can be reduced in a major way by conducting a simulation in

a regime where the relevant physical processes are efficiently modelled, even though

the modelling requires the use of significantly greater memory and/or data storage.
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Fig. 1. Density distribution in a rarefied flow about a flat plate for M 8 and Kn =

0.1.
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Fig. 4. Relative rmns error j~for the temperature variable versus the average number

of particles per cell N~, holding the total sample size S =Nt 0 .t.T fixed.
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Fig. 5. Relative rms error p, for the temperature variable versus the average number

of particles per cell N,, holding the total sample size S =Nt 0,45T fixed.
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Fig. 6. Absolute rms error 0a for the temperature variable versus the average number

of particles per cell N,,, as obtained from the solution of Eq. (10).
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Fig. 7. Total sample size S e Nr.r.T, or relative computational cost, versus average

number of particles per cell N, for the temperature variable.
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